
<abstract><p>We studied radio labelings of graphs in response to the Channel Assignment Problem (CAP). In a graph $ G, $ the radio labeling is a mapping $ \varpi:V(G) \rightarrow \{0, 1, 2, ..., \}, $ such as $ |\varpi(\mu')-\varpi(\mu'')|\geq diam(G)+1-d(\mu', \mu''). $ The label of $ \mu $ for under $ \varpi $ is defined by the integer $ \varpi(\mu), $ and the span under is defined by $ span(\varpi) = max \{|\varpi(\mu')-\varpi(\mu'')|: \mu', \mu'' \in V(G)\}. $ $ rn(G) = min_{\varpi} span(\varpi) $ is defined as the radio number of $ G $ when the minimum over all radio labeling $ \varpi $ of $ G $ is taken. $ G $ is said to be optimal if its radio labeling is $ span(\varpi) = rn(G). $ A graph H is said to be an $ m $ super subdivision if $ G $ is replaced by the complete bipartite graph $ K_{m, m} $ with $ m = 2 $ in such a way that the end vertices of the edge are merged with any two vertices of the same partite set $ X $ or $ Y $ of $ K_{m, m} $ after removal of the edge of $ G $. Up to this point, many lower and upper bounds of $ rn(G) $ have been found for several kinds of graph families. This work presents a comprehensive analysis of the radio number $ rn(G) $ for a graph $ G $, with particular emphasis on the $ m $ super subdivision of a path $ P_{n} $ with $ n (n \geq 3) $ vertices, along with a complete bipartite graph $ K_{m, m} $ consisting of $ m $ v/ertices, where $ m = 2 $.</p></abstract>
$ m- $super subdivision, Graph Labeling, Limits and Structures in Graph Theory, radio number, Graph Limits, QA1-939, FOS: Mathematics, Discrete Mathematics and Combinatorics, complete bipartite, Graph Labeling and Dimension Problems, Computer network, Geography, path, Path (computing), Computer science, Computational Theory and Mathematics, Archaeology, Combinatorics, channel assignment, Computer Science, Physical Sciences, radio labeling, Subdivision, Mathematics, Graph Theory and Algorithms
$ m- $super subdivision, Graph Labeling, Limits and Structures in Graph Theory, radio number, Graph Limits, QA1-939, FOS: Mathematics, Discrete Mathematics and Combinatorics, complete bipartite, Graph Labeling and Dimension Problems, Computer network, Geography, path, Path (computing), Computer science, Computational Theory and Mathematics, Archaeology, Combinatorics, channel assignment, Computer Science, Physical Sciences, radio labeling, Subdivision, Mathematics, Graph Theory and Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
