
doi: 10.1137/0611020
Certain variants of the Toda flow are continuous analogues of the $QR$ algorithm and other algorithms for calculating eigenvalues of matrices. This was a remarkable discovery of the early eighties. Until very recently contemporary researchers studying this circle of ideas have been unaware that continuous analogues of the quotient-difference and $LR$ algorithms were already known to Rutishauser in the fifties. Rutishauser’s continuous analogue of the quotient-difference algorithm contains the finite, nonperiodic Toda flow as a special case. A nice feature of Rutishauser’s approach is that it leads from the (discrete) eigenvalue algorithm to the (continuous) flow by a limiting process. Thus the connection between the algorithm and the flow does not come as a surprise. In this paper it is shown how Rutishauser’s approach can be generalized to yield large families of flows in a natural manner. The flows derived include continuous analogues of the $LR$, $QR$, $SR$, and $HR$ algorithms.
LR algorithm, Quotient-difference algorithm, Self-similar flow, QR algorithm, 510, Toda flow
LR algorithm, Quotient-difference algorithm, Self-similar flow, QR algorithm, 510, Toda flow
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
