
For mobile robots, navigating cluttered or dynamic environments often necessitates non-prehensile manipulation, particularly when faced with objects that are too large, irregular, or fragile to grasp. The unpredictable behavior and varying physical properties of these objects significantly complicate manipulation tasks. To address this challenge, this manuscript proposes a novel Reactive Pushing Strategy. This strategy allows a mobile robot to dynamically adjust its base movements in real-time to achieve successful pushing maneuvers towards a target location. Notably, our strategy adapts the robot motion based on changes in contact location obtained through the tactile sensor covering the base, avoiding dependence on object-related assumptions and its modeled behavior. The effectiveness of the Reactive Pushing Strategy was initially evaluated in the simulation environment, where it significantly outperformed the compared baseline approaches. Following this, we validated the proposed strategy through real-world experiments, demonstrating the robot capability to push objects to the target points located in the entire vicinity of the robot. In both simulation and real-world experiments, the object-specific properties (shape, mass, friction, inertia) were altered along with the changes in target locations to assess the robustness of the proposed method comprehensively.
8 pages, 7 figures, submitted to IEEE Robotics and Automation Letters, for associated video, see https://youtu.be/IuGxlNe246M
FOS: Computer and information sciences, Computer Science - Robotics, Force and tactile sensing; mobile manipulation; reactive and sensor-based planning; robust/adaptive control, Robotics (cs.RO)
FOS: Computer and information sciences, Computer Science - Robotics, Force and tactile sensing; mobile manipulation; reactive and sensor-based planning; robust/adaptive control, Robotics (cs.RO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
