Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liriasarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2024
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACM Transactions on Embedded Computing Systems
Article . 2024 . Peer-reviewed
Data sources: Crossref
ACM Transactions on Embedded Computing Systems
Article . 2024 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Side-channel Analysis of Lattice-based Post-quantum Cryptography: Exploiting Polynomial Multiplication

Authors: Catinca Mujdei; Lennert Wouters; Angshuman Karmakar; Arthur Beckers; Jose Maria Bermudo Mera; Ingrid Verbauwhede;

Side-channel Analysis of Lattice-based Post-quantum Cryptography: Exploiting Polynomial Multiplication

Abstract

Polynomial multiplication algorithms such as Toom-Cook and the Number Theoretic Transform are fundamental building blocks for lattice-based post-quantum cryptography. In this work we present correlation power-analysis-based side-channel analysis methodologies targeting every polynomial multiplication strategy for all lattice-based post-quantum key encapsulation mechanisms in the final round of the NIST post-quantum standardization procedure. We perform practical experiments on real side-channel measurements, demonstrating that our method allows to extract the secret key from all lattice-based post-quantum key encapsulation mechanisms. Our analysis shows that the used polynomial multiplication strategy can significantly impact the time complexity of the attack.

Country
Belgium
Related Organizations
Keywords

Technology, 1006 Computer Hardware, Science & Technology, Computer Hardware & Architecture, Post-quantum cryptography, side-channel analysis, 0803 Computer Software, Toom-Cook multiplication, 0805 Distributed Computing, 4606 Distributed computing and systems software, Computer Science, Software Engineering, NUMBER, number-theoretic transform, 4006 Communications engineering, Computer Science, Computer Science, Hardware & Architecture, ATTACKS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 1%
Top 10%
Top 1%
Green