Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2022
License: CC BY NC SA
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heat Transfer Engineering
Article . 2022 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC SA
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface Transfer Coefficients Estimation for Heat Conduction Problem Using the Bayesian Framework

Authors: Berger, Julien; Legros, Clemence;

Surface Transfer Coefficients Estimation for Heat Conduction Problem Using the Bayesian Framework

Abstract

This work deals with an inverse two-dimensional nonlinear heat conduction problem to determine the top and lateral surface transfer coefficients. For this, the \textsc{B}ayesian framework with the \textsc{M}arkov Chain \textsc{M}onte \textsc{C}arlo algorithm is used to determine the posterior distribution of unknown parameters. To handle the computational burden, a lumped one-dimensional model is proposed. The lumped model approximations are considered within the parameter estimation procedure thanks to the Approximation Error Model. The experiments are carried out for several configurations of chamber ventilator speed. Experimental observations are obtained through a complete measurement uncertainty propagation. By solving the inverse problem, accurate probability distributions are determined. Additional investigations are performed to demonstrate the reliability of the lumped model, in terms of accuracy and computational gains.

Keywords

FOS: Computer and information sciences, [SPI.GCIV.CD]Engineering Sciences [physics]/Civil Engineering/Construction durable, [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment, inverse heat conduction problem, lumped model, [SPI.GCIV.CD] Engineering Sciences [physics]/Civil Engineering/Construction durable, model reliability, [SPI.GCIV.EC] Engineering Sciences [physics]/Civil Engineering/Eco-conception, [SPI.FLUID] Engineering Sciences [physics]/Reactive fluid environment, Bayesian estimation, [SPI.MAT] Engineering Sciences [physics]/Materials, [SPI.GCIV.RHEA] Engineering Sciences [physics]/Civil Engineering/Rehabilitation, [SPI.MAT]Engineering Sciences [physics]/Materials, 620, Computational Engineering, Finance, and Science (cs.CE), surface heat transfer coefficient, [SPI.GCIV.RHEA]Engineering Sciences [physics]/Civil Engineering/Rehabilitation, [SPI.GCIV.MAT]Engineering Sciences [physics]/Civil Engineering/Matériaux composites et construction, [SPI.GCIV.MAT] Engineering Sciences [physics]/Civil Engineering/Matériaux composites et construction, Computer Science - Computational Engineering, Finance, and Science, [SPI.GCIV.EC]Engineering Sciences [physics]/Civil Engineering/Eco-conception

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green