
Cet article donne plusieurs propriétés d'un nouveau type de sous-modules, à savoir faiblement (m, n) -semiprime sous-modules où m et n sont des entiers positifs satisfaisant m > n. Les objectifs principaux du présent article sont de caractériser faiblement (m, n) sous-modules semiprime et de fournir une nouvelle caractérisation des modules réguliers de von Neumann en termes de faiblement (m, n)-semiprime sous-modules.
Este artículo proporciona varias propiedades de un nuevo tipo de submódulos, a saber, submódulos débilmente (m, n) -semiprime donde m y n son enteros positivos que satisfacen m > n.Los objetivos principales del presente artículo son caracterizar submódulos débilmente (m, n) semiprime y proporcionar una nueva caracterización de los módulos regulares de von Neumann en términos de submódulos débilmente (m, n) -semiprime.
This article gives several properties of a new type of submodules, namely weakly (m, n) -semiprime submodules where m and n are positive integers satisfying m > n.The primary objectives of the present article are to characterize weakly (m, n) semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly (m, n)-semiprime submodules.
This article gives several properties of a new type of submodules, namely weakly (m, n)-semiprime submodules where m and n are positive integers satisfying m > n.The primary objectives of the present article are to characterize weakly (m, n)semiprime submodules and to provide a new characterization of the von Neumann regular modules in terms of weakly (m, n)-semiprime submodules.
تعطي هذه المقالة العديد من الخصائص لنوع جديد من الوحدات الفرعية، وهي الوحدات الفرعية الضعيفة (m، n) - semiprime حيث m و n هي أعداد صحيحة إيجابية ترضي m > n. الأهداف الأساسية لهذه المقالة هي توصيف الوحدات الفرعية الضعيفة (m، n) semiprime وتوفير توصيف جديد للوحدات النمطية العادية لـ von Neumann من حيث الوحدات الفرعية الضعيفة (m، n) - semiprime.
Algebra and Number Theory, Study of properties and structures of commutative rings, Deformations and Structures of Hom-Lie Algebras, Arithmetic, Semiprime, Application of Soft Set Theory in Decision Making, Pure mathematics, Social Sciences, Management Science and Operations Research, Computer science, Decision Sciences, duplication modules, Combinatorics, von neumann regular module, Prime (order theory), Physical Sciences, QA1-939, FOS: Mathematics, weakly (m; n)-semiprime submodule, Quasi-Lie Algebras, Mathematics
Algebra and Number Theory, Study of properties and structures of commutative rings, Deformations and Structures of Hom-Lie Algebras, Arithmetic, Semiprime, Application of Soft Set Theory in Decision Making, Pure mathematics, Social Sciences, Management Science and Operations Research, Computer science, Decision Sciences, duplication modules, Combinatorics, von neumann regular module, Prime (order theory), Physical Sciences, QA1-939, FOS: Mathematics, weakly (m; n)-semiprime submodule, Quasi-Lie Algebras, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
