Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/82...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/5n...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximate solutions of the $ 2 $D space-time fractional diffusion equation via a gradient-descent iterative algorithm with Grünwald-Letnikov approximation

حلول تقريبية لمعادلة الانتشار الجزئي للزمكان $ 2 $D عبر خوارزمية تكرارية متدرجة مع تقريب Grünwald - Letnikov
Authors: Adisorn Kittisopaporn; Pattrawut Chansangiam;

Approximate solutions of the $ 2 $D space-time fractional diffusion equation via a gradient-descent iterative algorithm with Grünwald-Letnikov approximation

Abstract

<abstract><p>We consider the two-dimensional space-time fractional differential equation with the Caputo's time derivative and the Riemann-Liouville space derivatives on bounded domains. The equation is subjected to the zero Dirichlet boundary condition and the zero initial condition. We discretize the equation by finite difference schemes based on Grünwald-Letnikov approximation. Then we linearize the discretized equations into a sparse linear system. To solve such linear system, we propose a gradient-descent iterative algorithm with a sequence of optimal convergence factor aiming to minimize the error occurring at each iteration. The convergence analysis guarantees the capability of the algorithm as long as the coefficient matrix is invertible. In addition, the convergence rate and error estimates are provided. Numerical experiments demonstrate the efficiency, the accuracy and the performance of the proposed algorithm.</p></abstract>

Keywords

fractional derivatives, Economics, Conjugate gradient method, Mathematical analysis, Bounded function, Engineering, iterative method, Numerical Methods for Singularly Perturbed Problems, Numerical Integration Methods for Differential Equations, QA1-939, FOS: Mathematics, Genetics, Convection-Diffusion Problems, grünwald-letnikov approximation, Biology, gradient descent, Anomalous Diffusion Modeling and Analysis, Economic growth, fractional diffusion equation, Numerical Analysis, Dirichlet boundary condition, Time-Fractional Diffusion Equation, Rate of convergence, Applied mathematics, Algorithm, Fractional Derivatives, Boundary (topology), Channel (broadcasting), Modeling and Simulation, FOS: Biological sciences, Electrical engineering, Physical Sciences, Convergence (economics), Finite Difference Schemes, Mathematics, Discretization, Sequence (biology)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Beta
sdg_colorsSDGs:
Related to Research communities