Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth and Planetary Science Letters
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering

Authors: Gaojun Li; Ruiyu Yang; Zhewen Xu; Jens Hartmann; David W. Hedding; Xianhua Li; Richard E. Ernst; +4 Authors

Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering

Abstract

Abstract Weathering plays a significant role in the Earth system through the exchange of material among the lithosphere, atmosphere, hydrosphere, and biosphere. Variation of continental weathering in deep-time, however, remains elusive. This work investigates continental weathering recorded by detrital zircon. Zircon can record the oxygen isotopic composition ( δ 18 O) of its parent crust at the time of crystallization, the value of which principally reflects the time-integrated effect of crustal alteration. The Hf isotopes and U-Pb isotopes of zircon also help to constrain the alteration history between crust generation and zircon crystallization. A new algorithm is introduced to reconstruct the average δ 18 O alteration rate of continental crust (Rδ18O-CC) through time by solving a set of linear equations based on a large population of detrital zircons with varying temporal coverage across the history of crustal alteration. A nearly three-billion-year history of Rδ18O-CC from 3.2 Ga to 0.3 Ga can be reconstructed using more than 5,000 globally distributed detrital zircons with coupled U-Pb-Hf-O isotopic records. The reconstructed Rδ18O-CC shows an overall bell-shape long-term evolution centered at ∼2 Ga superposed with variations that are coupled with supercontinental assembly cycles. The long-term evolution of the reconstructed Rδ18O-CC seems to be correlated with solid-earth CO2 degassing expected from the age distribution of deleted mantle and the supercontinental cycles. Thus, the Rδ18O-CC is interpreted to reflect weathering considering the control of solid-earth CO2 degassing on the total weathering flux of continental crust. However, independent evidence on the solid-earth CO2 degassing is unavailable, interpreting Rδ18O-CC as a weathering record requires further testing. Nevertheless, this work provides an example of how the time-integrated signal, with large noise-to-signal ratio, preserved in geological archives can be deconvolved using a large dataset. The result also demonstrates the great potential that weathering history may have in reconstructing the operation of the Earth system across deep-time.

Keywords

силикатное выветривание, углеродный цикл, изотопы кислорода, палеоклимат, тектоника плит

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green