
This paper considers the asymptotic behavior of the strong solution of the linear partial stochastic differential Ito–Skorokhod equation in the corresponding space with random parameters. An existence of the strong solution is proved and sufficient conditions for the asymptotic stability and the mean square instability of a strong solution of a similar equation are obtained. The stochastic model of complex systems, which is proposed in this paper, is an attempt to take into consideration the full extent of randomness in the studying of real processes, which are described by differential equations in partial derivatives, on the right side of which a diffuse perturbations of the Brownian process type and random perturbations of other types are taken into consideration.
Cauchy problem, mean square stability, asymptotic stability, random perturbations, QA75.5-76.95, stochastic partial differential equation, existence of the solution, задача Коші; стохастичне диференціальне рівняння в частинних похідних; існування розв’язку; випадкові збурення, Electronic computers. Computer science, задача Коши; стохастическое дифференциальное уравнение в частных производных; существование решения; случайные возмущения, Cauchy problem; stochastic partial differential equation; existence of the solution; random perturbations
Cauchy problem, mean square stability, asymptotic stability, random perturbations, QA75.5-76.95, stochastic partial differential equation, existence of the solution, задача Коші; стохастичне диференціальне рівняння в частинних похідних; існування розв’язку; випадкові збурення, Electronic computers. Computer science, задача Коши; стохастическое дифференциальное уравнение в частных производных; существование решения; случайные возмущения, Cauchy problem; stochastic partial differential equation; existence of the solution; random perturbations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
