
5G is expected to operate in a wide frequency range to support new challenging use-cases. Multi- RATs (Radio Access Technologies): NR (New Radio) and evolved LTE (Long Term Evolution) will together constitute 5G. Utilizing NR at high frequencies will have a significant impact on radio propagation conditions with e.g. unfavorable higher path loss and increased outdoor-to-indoor penetration losses. In order to provide a reliable communication from the outset of 5G deployment and to minimize the standardization and implementation complexity, 5G UP (User Plane) instances of 5G AIs (Air Interface) related to evolved LTE and NR need to be aggregated on a certain layer of the protocol stack. This paper sheds light on how to integrate 5G AIs into a single 5G AI framework and explores which protocol stack layer could be used as aggregation layer. Inter-RAT hard handover is the state of the art technique to integrate multiple RATs in order to support mobility and reliability across different RATs. However, the hard handover incurs a transmission interruption which stands as an obstacle along the way of accomplishing 5G design. According to simulation results, a common PDCP (Packet Data Convergence Protocol) layer improves the hard handover functionality and stands out as a basis for tight interworking between evolved LTE and NR. By means of simulation, it is shown that the multi-RAT UP aggregation can achieve three times higher user throughput, when NR is using 28 GHz and LTE 2 GHz, compared to stand-alone NR.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
