
arXiv: 1601.02415
The Minimum Size Tree Decomposition (MSTD) and Minimum Size Path Decomposition (MSPD) problems ask for a given n-vertex graph G and integer k, what is the minimum number of bags of a tree decomposition (respectively, path decomposition) of G of width at most k. The problems are known to be NP-complete for each fixed $k\geq 4$. We present algorithms that solve both problems for fixed k in $2^{O(n/ \log n)}$ time and show that they cannot be solved in $2^{o(n / \log n)}$ time, assuming the Exponential Time Hypothesis.
Extended abstract appeared in proceedings of ESA 2015
FOS: Computer and information sciences, cs.DS, General Computer Science, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Theoretical Computer Science
FOS: Computer and information sciences, cs.DS, General Computer Science, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Theoretical Computer Science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
