
Fraud detection is an important research area where machine learning has a significant role to play. An important task in that context, on which the quality of the results obtained depends, is feature engineering. Unfortunately, this is very time and human consuming. Thus, in this article, we present the DuSVAE model that consists of a generative model that takes into account the sequential nature of the data. It combines two variational autoencoders that can generate a condensed representation of the input sequential data that can then be processed by a classifier to label each new sequence as fraudulent or genuine. The experiments we carried out on a large real-word dataset, from the Worldline company, demonstrate the ability of our system to better detect frauds in credit card transactions without any feature engineering effort.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
