Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Electroni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Electronic Imaging
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient graphical-processor-unit parallelization algorithm for computing Eigen values

Authors: Ben Sayadia, Sofien; Elloumi, Yaroub; Akil, Mohamed; Bedoui, Mohamed;

Efficient graphical-processor-unit parallelization algorithm for computing Eigen values

Abstract

Several leading-edge applications such as pathology detection, biometric identification, and face recognition are based mainly on blob and line detection. To address this problem, Eigen value computing has been commonly employed due to its accuracy and robustness. However, Eigen value computing requires a raised computational processing, intensive memory data access, and data overlapping, which involve higher execution times. To overcome these limitations, we propose in this paper a new parallel strategy to implement Eigen value computing using a graphics processing unit (GPU). Our contributions are (1) to optimize instruction scheduling to reduce the computation time, (2) to efficiently partition processing into blocks to increase the occupancy of streaming multiprocessors, (3) to provide efficient input data splitting on shared memory to benefit from its lower access time, and (4) to propose new data management of shared memory to avoid access memory conflict and reduce memory bank accesses. Experimental results show that our proposed GPU parallel strategy for Eigen value computing achieves speedups of 27 compared with a multithreaded implementation, of 16 compared with a predefined function in the OpenCV library, and of eight compared with a predefined function in the Cublas library, all of which are performed into a quad core multi-central-processing unit platform. Next, our parallel strategy is evaluated through an Eigen value-based method for retinal thick vessel segmentation, which is essential for detecting ocular pathologies. Eigen value computing is executed in 0.017 s when using Structured Analysis of the Retina database images. Accordingly, we achieved real-time thick retinal vessel segmentation with an average execution time of about 0.039 s.

Keywords

Real-time GPU implementation, Graphics Processing unit (GPU), Eigen values, [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Parallel algorithms, Hessian filter, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], CUDA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze