Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling and Testing RF Meta-Atom Designs for Rapid Metamaterial Prototyping

Authors: Krones, Russell P.; Langley, Derrick; Collins, Peter J.; Coutu, Ronald A., Jr.;

Modeling and Testing RF Meta-Atom Designs for Rapid Metamaterial Prototyping

Abstract

Metamaterials offer custom electromagnetic properties not easily found elsewhere. In this investigation, we look at fabrication methods to reduce time and cost for metamaterials. These designs are compared against analytical modeling, and verified with experimental radio frequency (RF) testing. This paper discusses two models used to represent meta-atoms as lumped circuit elements to establish a resonant frequency. The analytic model is compared with a finite element method (FEM) modeling simulation to determine the capacitance and inductance of the meta-atom and establish a resonant frequency for the comparison. These modeling methods help to determine the resonant frequency before it can be experimentally verified. In this research, we experimentally show the resonant response at 2.57 GHz. In addition, various Metamaterial configurations are tested to capture effects for focusing and blocking electromagnetic waves. The best focusing response occurred at 2.57 GHz with a null of −21 dB with silver inkjet printed meta-atoms supported with FR4 material. The best blocking response occurred at 2.76 GHz with a null of −92 dB with silver inkjet printed meta-atoms supported with FR4 material. The experimental measurements provide characterization for the resonant response, and extraction of electromagnetic material properties which enhances the fundamental understanding for metamaterials.

Related Organizations
Keywords

Meta-atom, Metamaterial, Engineering, Radio frequency, Computer Engineering, 535, Electrical and Computer Engineering, Resonant response, RF measurement

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!