
Metamaterials offer custom electromagnetic properties not easily found elsewhere. In this investigation, we look at fabrication methods to reduce time and cost for metamaterials. These designs are compared against analytical modeling, and verified with experimental radio frequency (RF) testing. This paper discusses two models used to represent meta-atoms as lumped circuit elements to establish a resonant frequency. The analytic model is compared with a finite element method (FEM) modeling simulation to determine the capacitance and inductance of the meta-atom and establish a resonant frequency for the comparison. These modeling methods help to determine the resonant frequency before it can be experimentally verified. In this research, we experimentally show the resonant response at 2.57 GHz. In addition, various Metamaterial configurations are tested to capture effects for focusing and blocking electromagnetic waves. The best focusing response occurred at 2.57 GHz with a null of −21 dB with silver inkjet printed meta-atoms supported with FR4 material. The best blocking response occurred at 2.76 GHz with a null of −92 dB with silver inkjet printed meta-atoms supported with FR4 material. The experimental measurements provide characterization for the resonant response, and extraction of electromagnetic material properties which enhances the fundamental understanding for metamaterials.
Meta-atom, Metamaterial, Engineering, Radio frequency, Computer Engineering, 535, Electrical and Computer Engineering, Resonant response, RF measurement
Meta-atom, Metamaterial, Engineering, Radio frequency, Computer Engineering, 535, Electrical and Computer Engineering, Resonant response, RF measurement
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
