Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Combinato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Combinatorial Theory Series A
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Involution words: Counting problems and connections to Schubert calculus for symmetric orbit closures

Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures
Authors: Hamaker, Zachary; Marberg, Eric Paul; Pawlowski, Brendan;

Involution words: Counting problems and connections to Schubert calculus for symmetric orbit closures

Abstract

Involution words are variations of reduced words for involutions in Coxeter groups, first studied under the name of "admissible sequences" by Richardson and Springer. They are maximal chains in Richardson and Springer's weak order on involutions. This article is the first in a series of papers on involution words, and focuses on their enumerative properties. We define involution analogues of several objects associated to permutations, including Rothe diagrams, the essential set, Schubert polynomials, and Stanley symmetric functions. These definitions have geometric interpretations for certain intervals in the weak order on involutions. In particular, our definition of "involution Schubert polynomials" can be viewed as a Billey-Jockusch-Stanley type formula for cohomology class representatives of $\mathrm{O}_n$- and $\mathrm{Sp}_{2n}$-orbit closures in the flag variety, defined inductively in recent work of Wyser and Yong. As a special case of a more general theorem, we show that the involution Stanley symmetric function for the longest element of a finite symmetric group is a product of staircase-shaped Schur functions. This implies that the number of involution words for the longest element of a finite symmetric group is equal to the dimension of a certain irreducible representation of a Weyl group of type $B$.

38 pages; v2: some revisions and corrections, with an expanded introduction; v3, v4: added remarks, attribution, and acknowledgements; v5: revised introduction, updated references; v6: various revisions and corrections, removed geometric appendix, added index of notation, final version

Keywords

Representation theory for linear algebraic groups, Group actions on varieties or schemes (quotients), permutations, 511, spherical varieties, Involutions, Coxeter groups, Bruhat order, Grassmannians, Schubert varieties, flag manifolds, Linear algebraic groups over arbitrary fields, Mathematics - Algebraic Geometry, Reflection and Coxeter groups (group-theoretic aspects), Schubert polynomials, FOS: Mathematics, Mathematics - Combinatorics, Stanley symmetric functions, Representation Theory (math.RT), Algebraic Geometry (math.AG), Symmetric functions and generalizations, Permutations, Combinatorial aspects of groups and algebras, Reduced words, reduced words, involutions, Combinatorics (math.CO), Spherical varieties, Mathematics - Representation Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Green
bronze