Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science and Pollution Research
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tungsten Oxide Nanostructures Peculiarity and Photocatalytic Activity for the Efficient Elimination of the Organic Pollutant

Authors: Deepika Jamwal; Vishal Mutreja; null Rahul; Surinder Kumar Mehta; Akash Katoch; Sang Sub Kim;

Tungsten Oxide Nanostructures Peculiarity and Photocatalytic Activity for the Efficient Elimination of the Organic Pollutant

Abstract

Abstract For the first time, the effect of gemini based twin-tail and conventional surfactant on tungsten oxide nanostructures and their efficacy for the elimination of the organic pollutant is studied. The tungsten oxide nanostructures were synthesized by a simple hydrothermal route in the presence of C14TAB and gemini based twin-tail surfactant. The impact of using these special shape and size directing agents for the synthesis of nanostructures was observed in the form of different shapes and sizes. The tungsten oxide web of chains type nanostructure was obtained using C14TAB in comparison to the cube shaped nanoparticles through twin-tail surfactant. On contrary, the twin-tail surfactant provides sustainable and controlled growth of cube shape nanoparticles of size ~ 15 nm nearly half of the size ~ 35 nm obtained using conventional surfactant C14TAB, respectively. For the detailed structural features, the Williamson-Hall analysis method was implemented to find out the crystalline size and lattice strain of the prepared nanostructures. Owing to the strong quantum confinement effect, the WO3 cube shaped nanoparticles with an optical band gap of 2.69 eV of the prepared nanoparticles showed excellent photocatalytic efficacy toward organic pollutant (Fast green FCF) compared to the web of chain nanostructures with an optical band gap of 2.66 eV. The mechanism has been discussed in detail in the respective section. The ability of the prepared systems to decompose the organic pollutant (Fast green FCF) in water was tested under visible light irradiations. The percentage degradation was found to be 94% and 86% for WO3 cube shaped nanoparticles and WO3 web of chains, respectively. The simplicity of the fabrication method and the high photocatalytic performance of the systems can be promising in environmental applications to treat water pollution.

Keywords

Surface-Active Agents, Oxides, Tungsten, Nanostructures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
hybrid