Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Global Op...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Global Optimization
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
EconStor
Article . 2025
License: CC BY
Data sources: EconStor
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Out-of-sample estimation for a branch-and-bound algorithm with growing datasets

Authors: Susanne Sass; Alexander Mitsos; Nikolay I. Nikolov; Angelos Tsoukalas;

Out-of-sample estimation for a branch-and-bound algorithm with growing datasets

Abstract

Abstract In [Sass et al., Eur. J. Oper. Res., 316 (1): 36 – 45, 2024], we proposed a branch-and-bound (B&B) algorithm with growing datasets for the deterministic global optimization of parameter estimation problems based on large datasets. Therein, we start the B&B algorithm with a reduced dataset and augment it until reaching the full dataset upon convergence. However, convergence may be slowed down by a gap between the lower bounds of the reduced and the original problem, in particular for noisy measurement data. Thus, we propose the use of out-of-sample estimation for improving the lower bounds calculated with reduced datasets. Based on this, we extend the deterministic approach and propose two heuristic approaches. The computational performance of all approaches is compared with the standard B&B algorithm as a benchmark based on real-world estimation problems from process systems engineering, biochemistry, and machine learning covering datasets with and without measurement noise. Our results indicate that the heuristic approaches can improve the final lower bounds on the optimal objective value without cutting off the global solution. Aside from this, we prove that resampling can decrease the variance of the lower bounds calculated based on random initial datasets. In our case study, resampling hardly affects the performance of the approaches which indicates that the B&B algorithm with growing datasets does not suffer from large variances.

Keywords

ddc:510, Resampling, overfitting, spatial branch-and-bound, Overfitting, Approximation methods and heuristics in mathematical programming, 510, Statistical aspects of big data and data science, resampling, Nonlinear programming, Spatial branch and bound, Sensitivity, stability, parametric optimization, Parameter estimation, Polyhedral combinatorics, branch-and-bound, branch-and-cut, nonlinear programming, parameter estimation, info:eu-repo/classification/ddc/510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities