Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lab Animalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lab Animal
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
Data sources: VBN
Lab Animal
Article . 2024
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spared ulnar nerve injury results in increased layer III–VI excitability in the pig somatosensory cortex

Authors: Suzan Meijs; Andrew J. Hayward; Thomas Gomes Nørgaard Dos Santos Nielsen; Carsten Reidies Bjarkam; Winnie Jensen;

Spared ulnar nerve injury results in increased layer III–VI excitability in the pig somatosensory cortex

Abstract

AbstractThis study describes cortical recordings in a large animal nerve injury model. We investigated differences in primary somatosensory cortex (S1) hyperexcitability when stimulating injured and uninjured nerves and how different cortical layers contribute to S1 hyperexcitability after spared ulnar nerve injury. We used a multielectrode array to record single-neuron activity in the S1 of ten female Danish landrace pigs. Electrical stimulation of the injured and uninjured nerve evoked brain activity up to 3 h after injury. The peak amplitude and latency of early and late peristimulus time histogram responses were extracted for statistical analysis. Histological investigations determined the layer of the cortex in which each electrode contact was placed. Nerve injury increased the early peak amplitude compared with that of the control group. This difference was significant immediately after nerve injury when the uninjured nerve was stimulated, while it was delayed for the injured nerve. The amplitude of the early peak was increased in layers III–VI after nerve injury compared with the control. In layer III, S1 excitability was also increased compared with preinjury for the early peak. Furthermore, the late peak was significantly larger in layer III than in the other layers in the intervention and control group before and after injury. Thus, the most prominent increase in excitability occurred in layer III, which is responsible for the gain modulation of cortical output through layer V. Therefore, layer III neurons seem to have an important role in altered brain excitability after nerve injury.

Keywords

Neurons, Swine, Somatosensory Cortex, Article, Electric Stimulation, Disease Models, Animal, Peripheral Nerve Injuries, Ulnar Nerve/injuries, Animals, Somatosensory Cortex/physiopathology, Female, Peripheral Nerve Injuries/physiopathology, Neurons/physiology, Ulnar Nerve

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities