
In the fine-grained categories, images have lager diversity in their intra categories. Meanwhile, they have more similarity in their inter categories. Therefore, images are difficultly distinguish during fine-grained visual classification(FGVC). This paper proposes a deep sparse coding framework to implement the fine-grained visual categorization. In our framework, deep layer structures with sparse coding are used to learn different spatial features. Especially, for categories with asymmetric structure, a quick and efficient pose estimation method is introduced to calibrate their poses. This framework is evaluated using two fine-grained datasets, i.e. Oxford 102 flowers dataset and the CUB-200-2011 bird dataset. Final experimental results show that the performance of our proposed system is highly competitive with state-of-the-art algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
