
Vector-matrix multiplication dominates the computation time and energy for many workloads, particularly neural network algorithms and linear transforms (e.g, the Discrete Fourier Transform). Utilizing the natural current accumulation feature of memristor crossbar, we developed the Dot-Product Engine (DPE) as a high density, high power efficiency accelerator for approximate matrix-vector multiplication. We firstly invented a conversion algorithm to map arbitrary matrix values appropriately to memristor conductances in a realistic crossbar array, accounting for device physics and circuit issues to reduce computational errors. The accurate device resistance programming in large arrays is enabled by close-loop pulse tuning and access transistors. To validate our approach, we simulated and benchmarked one of the state-of-the-art neural networks for pattern recognition on the DPEs. The result shows no accuracy degradation compared to software approach (99 % pattern recognition accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can achieve a speed-efficiency product of 1,000× to 10,000× compared to a custom digital ASIC.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 562 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
