Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Опір матеріалів і те...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical modeling of the stability of parametric vibrations of a high thin-wall shell of negative Gaussian curvature

Authors: Lukіanchenko, Olga; Paliy, Oksana;

Numerical modeling of the stability of parametric vibrations of a high thin-wall shell of negative Gaussian curvature

Abstract

A numerical simulation of the stability of parametric vibrations of a high thin-wall shell in the form of hyperboloid under the action of the external surface pressure and axial compression was performed. The equation of dynamic stability of the shell was presented in the form of a static equilibrium equation with the addition of the D'Alambert forces of inertia, dissipative forces, and some components of the unexcited stress-strain state of the shell were depending on time. The reduced mass, damping, stiffness, and geometric stiffness matrixes of the shell were formed using the procedures of the finite element analysis software program. The problem of nonlinear statics was solved by the modified Newton-Raphson method. The stability of the shell under the action of the static component of parametric load of the two types are solved by the Lanczos method. A modal analysis of the shell without loads in a linear formulation was performed by Lanczos method. The frequencies and modes vibrations of the shell, which was loaded with the static component of the parametric load, were calculated. When were forming the models of the stability of parametric vibrations the features of the static and dynamic behavior of the thin-walled shell of negative Gaussian curvature under different types of load were taken into account. The research of the static and dynamic characteristics of the shell showed that the wall deformation shape have a large number of half-waves both in the radial and axial directions. Such a deformation of the wall in the form of bulges and dents is more dangerous than the deformation of Shukhov hyperboloid wall consisting of the rods.

Виконано чисельне моделювання стійкості параметричних коливань високої тонкостінної оболонки виду гіперболічного параболоїда при зовнішньому поверхневому тиску та осьовому стисканні. Редуковані матриці мас, демпфірування, жорсткості і геометричної жорсткості оболонки сформовані за допомогою процедур програмного комплексу скінченноелементного аналізу. Розв’язані задачі нелінійної статики модифікованим методом Ньютона-Рафсона та стійкості методом Ланцоша при дії статичної складової параметричного навантаження двох видів. Виконано модальний аналіз оболонки в лінійній постановці без урахування навантаження методом Ланцоша і в нелінійній постановці для визначення власних частот і форм коливань оболонки, яка навантажена статичною складовою параметричного навантаження двох видів. При формуванні редукованих моделей стійкості параметричних коливань оболонки при різних видах навантаження враховані особливості її статичної та динамічної поведінки.

Keywords

параметричні коливання; динамічна стійкість; метод скінченних елементів; висока тонкостінна оболонка; гіперболоїд, dynamic stability; parametric vibrations; finite element method; high thin-wall shell; hyperboloid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold