Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Signal Processing
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels

Authors: Shiqi Gong; Chengwen Xing; Vincent K. N. Lau; Sheng Chen; Lajos Hanzo;

Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels

Abstract

The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to approximate the optimal fully-digital schemes with much reduced hardware cost and signal processing complexity. Generally, this hybrid transceiver structure requires a joint design of analog and digital processing to enable both beamsteering and spatial multiplexing gains. In this paper, we develop various weighted mean-square-error minimization (WMMSE) based hybrid transceiver designs over multiple-input multiple-output (MIMO) interference channels at both millimeter wave (mmWave) and microwave frequencies. Firstly, a heuristic joint design of hybrid precoder and combiner using alternating optimization is proposed, in which the majorization-minimization (MM) method is utilized to design the analog precoder and combiner with unit-modulus constraints. It is validated that this scheme achieves the comparable performance to the WMMSE fully-digital solution. To further reduce the complexity, a phase projection-based two-stage scheme is proposed to decouple the designs of analog and digital precoder combiner. Secondly, inspired by the fully-digital solutions based on the block-diagonalization zero-forcing (BD-ZF) and signal-to-leakage-plus-noise ratio (SLNR) criteria, low-complexity MMbased BD-ZF and SLNR hybrid designs are proposed to well approximate the corresponding fully-digital solutions. Thirdly, the partially-connected hybrid structure for reducing system hardware cost and power consumption is considered, for which the MM-based alternating optimization still works. Numerical results demonstrate the similar or superior performance of all the above proposed schemes over the existing benchmarks.

13 pages, 8 figures

Countries
China (People's Republic of), United Kingdom
Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), 621, 620, FOS: Electrical engineering, electronic engineering, information engineering, Majorization-minimization, Hybrid transceiver designs, Electrical Engineering and Systems Science - Signal Processing, WMMSE, MIMO interference channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Green
bronze