Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Antennas and Wireless Propagation Letters
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2022
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DSpace@Dogus
Article . 2022
Data sources: DSpace@Dogus
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperparameter Optimization of Long Short-Term Memory-Based Forecasting DNN for Antenna Modeling Through Stochastic Methods

Authors: Lida Kouhalvandi; Ladislau Matekovits;

Hyperparameter Optimization of Long Short-Term Memory-Based Forecasting DNN for Antenna Modeling Through Stochastic Methods

Abstract

This letter presents an impressive optimization method for determining the optimal model hyperparameters of a deep neural network (DNN) targeted to model the characteristics of antennas. In this letter, we propose an innovative approach of efficient yield analysis for modeling and sizing antennas. It is based on the long short-term memory DNN aiming to forecast the extended frequency responses, where various stochastic methods are applied for determining the optimal hyperparameters while training a DNN. Among the various methods, the one which models the antenna accurately in terms of input scattering parameter, gain, and radiation patterns is the winner. The proposed method is compact and addresses the problem of heavy reliance to the designer experience in determining the hyperparameters. Additionally, forecasting the future frequency responses of the antenna reduces the designer's effort substantially in measuring large frequency band; hence, measuring the whole frequency band would not be needed. For validating the effectiveness of the proposed method, the fabricated two element antenna array is used for modeling, where the results demonstrate that the Thompson sampling algorithm can determine optimal hyperparameters with minimum error in comparison with other reported stochastic methods leads to predict the future frequency band accurately.

Keywords

Optimization, Testing, forecasting, Directional patterns (antenna), Deep neural network, Antenna measurements, antenna, deep neural network (DNN), Stochastic methods, Stochastic processes, Frequency response, Deep neural networks, Long short-term memory, Optimal hyperparameter, Optimization method, Training, Antenna arrays, Hyper-parameter, Hyper-parameter optimizations, Antennas measurement, Stochastic systems, Antenna; deep neural network (DNN); forecasting; long short-term memory (LSTM); optimal hyperparameter; stochastic methods, long short-term memory (LSTM), Brain, Random processes, Antenna modelling, Stochastic models, Antenna, Slot antennas, optimal hyperparameter, stochastic methods, Antennas, Optimisations, Forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green