
Real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. To solve such constrained multi-objective problems effectively, in this paper, we put forward a new approach which integrates self-adaptive differential evolution algorithm with α-constrained-domination principle, named SADE-αCD. In SADE-αCD, the trial vector generation strategies and the DE parameters are gradually self-adjusted adaptively based on the knowledge learnt from the previous searches in generating improved solutions. Furthermore, by incorporating domination principle into α-constrained method, α-constrained-domination principle is proposed to handle constraints in multi-objective problems. The advantageous performance of SADE-αCD is validated by comparisons with non-dominated sorting genetic algorithm-II, a representative of state-of-the-art in multi-objective evolutionary algorithms, and constrained multi-objective differential evolution, over fourteen test problems and four well-known constrained multi-objective engineering design problems. The performance indicators show that SADE-αCD is an effective approach to solving constrained multi-objective problems, which is basically enabled by the integration of self-adaptive strategies and α-constrained-domination principle.
multi-objective optimization, differential evolution, self-adaptive strategy, α-constrained-domination, Geometry and Topology, constrained optimization, Software, Theoretical Computer Science
multi-objective optimization, differential evolution, self-adaptive strategy, α-constrained-domination, Geometry and Topology, constrained optimization, Software, Theoretical Computer Science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
