Downloads provided by UsageCounts
Let $f(x)$ be a separable polynomial over a local field. Montes algorithm computes certain approximations to the different irreducible factors of $f(x)$, with strong arithmetic properties. In this paper we develop an algorithm to improve any one of these approximations, till a prescribed precision is attained. The most natural application of this "single-factor lifting" routine is to combine it with Montes algorithm to provide a fast polynomial factorization algorithm. Moreover, the single-factor lifting algorithm may be applied as well to accelerate the computational resolution of several global arithmetic problems in which the improvement of an approximation to a single local irreducible factor of a polynomial is required.
9 figures
Polynomial factorization, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Newton polygon, Algorismes, Polynomials, Ramification and extension theory, FOS: Mathematics, Okutsu approximation, Okutsu invariant, Number Theory (math.NT), Number-theoretic algorithms; complexity, Algebra and Number Theory, Mathematics - Number Theory, Polygons, Algebraic number theory computations, Montes approximation, Computational Mathematics, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, polynomial factorization, Polinomis, Local field, Montes algorithm, Polígons, Algorithms, 11S15, 11S04, 11Y40
Polynomial factorization, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Newton polygon, Algorismes, Polynomials, Ramification and extension theory, FOS: Mathematics, Okutsu approximation, Okutsu invariant, Number Theory (math.NT), Number-theoretic algorithms; complexity, Algebra and Number Theory, Mathematics - Number Theory, Polygons, Algebraic number theory computations, Montes approximation, Computational Mathematics, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, polynomial factorization, Polinomis, Local field, Montes algorithm, Polígons, Algorithms, 11S15, 11S04, 11Y40
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 61 | |
| downloads | 69 |

Views provided by UsageCounts
Downloads provided by UsageCounts