Downloads provided by UsageCounts
Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.
Accepted on IEEE Transactions on Affective Computing (TAC)
FOS: Computer and information sciences, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica, Facial expression, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Computer Vision and Pattern Recognition (cs.CV), Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Computer Science - Computer Vision and Pattern Recognition, Person perception, Interacció persona-ordinador, Gesture, :Informàtica::Aplicacions de la informàtica [Àrees temàtiques de la UPC], First impressions, Machine learning, Aprenentatge automàtic, Personality computing, Big-Five, Nonverbal signals, Visió per ordinador, Cognitive artificial intelligence, Subjective bias, Computer vision, Speech analysis, Multi-modal recognition, Human computer interaction
FOS: Computer and information sciences, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica, Facial expression, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Computer Vision and Pattern Recognition (cs.CV), Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Computer Science - Computer Vision and Pattern Recognition, Person perception, Interacció persona-ordinador, Gesture, :Informàtica::Aplicacions de la informàtica [Àrees temàtiques de la UPC], First impressions, Machine learning, Aprenentatge automàtic, Personality computing, Big-Five, Nonverbal signals, Visió per ordinador, Cognitive artificial intelligence, Subjective bias, Computer vision, Speech analysis, Multi-modal recognition, Human computer interaction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 59 | |
| downloads | 48 |

Views provided by UsageCounts
Downloads provided by UsageCounts