Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2015
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Digital Signal Processing
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Denoising sound signals in a bioinspired non-negative spectro-temporal domain

Authors: César Ernesto Martínez; John C. Goddard; Leandro E. Di Persia; Diego H. Milone; Hugo Leonardo Rufiner;

Denoising sound signals in a bioinspired non-negative spectro-temporal domain

Abstract

The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation. We address the problem of signal representation in the broad field of signal denoising.A biologically-inspired method is here adapted to a non-negative matrix factorization framework.A sparse coding is estimated of a combined dictionary from noisy and clean signals.A main denoising algorithm along its variants are presented.The method improves the quality of the signals, mainly under severe degradation.

Country
Argentina
Keywords

Approximate Auditory Cortical Representation, Non-Negative Sparse Coding, https://purl.org/becyt/ford/2.2, https://purl.org/becyt/ford/2, Bioinspired Signal Processing, Sound Denoising

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Green