Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anomaly detection based on data stream monitoring and prediction with improved Gaussian process regression algorithm

Authors: Jingyue Pang; Datong Liu; null Haitao Liao; Yu Peng; null Xiyuan Peng;

Anomaly detection based on data stream monitoring and prediction with improved Gaussian process regression algorithm

Abstract

Condition monitoring has gradually become the necessary part of the diagnostics and prognostics for the complex systems. Especially, with the rapid development of data acquisition and communication technology, the appearing of large scale data set and data stream brings great challenges to model and process the condition monitoring data As a result, anomaly detection of the streaming monitoring data attracts more attention in the fields of prognostics and health management (PHM). Hence, in this study, Gaussian process regression (GPR) is applied for the abnormal detection in data stream; and on this basis a real-time abnormal detection method is proposed based on the improved anomaly detection and mitigation (IADAM) strategy and GPR which realizes incremental detecting for future data samples and requires no pre-classification labels of anomalies. Anomaly detection tested on an artificial data set and actual mobile traffic data set indicates the effectiveness and reasonability of IADAM-GPR model compared with naive and Multilayer Perceptron (MLP) models.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!