
En nuestro trabajo estamos interesados en promover el aprendizaje de conocimientos estadísticos a partir de la modelización matemática. Usamos problemas estadísticos donde se estudian fenómenos sociales reales a partir de grandes cantidades de datos y que cumplen con los principios de diseño de las Modelling Eliciting Activities con alumnos de Educación Secundaria (15 años). Las tareas se dirigen a promover el desarrollo del concepto de variabilidad y aplicarlo para entender la situación estudiada. En este estudio nos centramos en caracterizar los modelos matemáticos que desarrolla el alumnado en una actividad de modelización estadística intentando identificar por qué se integran elementos al modelo o se descartan. Para ello se desarrolla un análisis cualitativo a partir de las grabaciones del trabajo en grupo de los alumnos en el aula. Los resultados obtenidos muestran que algunas decisiones de diseño del problema, como la gran cantidad de datos, o la ambigüedad de conceptos sociales, como el de justicia y equidad en los impuestos, resultan esenciales para el desarrollo de los modelos matemáticos. Las conclusiones del estudio tienen implicaciones para el diseño de tareas estadísticas, pero también para identificar el rol de la modelización matemática en el aprendizaje de conceptos estadísticos.
In our work we are interested in promoting the learning of statistical knowledge through mathematical modelling. We use statistical problems where real social phenomena are studied from large amounts of data and that comply with the design principles of the Modelling Eliciting Activities with secondary school students (15 years old). The tasks are aimed at promoting the development of the concept of variability and applying it to understand the situation studied using a mathematical model. In this study we focus on characterizing the mathematical models that students develop in a statistical modelling activity, trying to identify why elements are integrated into the model or discarded, as students conceptualize variability. For this purpose, a qualitative analysis is carried out on the basis of recordings of the students' group work in the classroom. The results obtained show that some problem design decisions, such as the large amount of data, or the ambiguity of social concepts, such as justice and equity in taxation, are essential for the development of mathematical models. The conclusions of the study have implications for the design of statistical tasks, but also for identifying the role of mathematical modelling in the learning of statistical concepts.
estadística, actividades promotoras de la modelización, modelización matemática, statistics, variability, educación secundaria, secondary education, mathematical modeling, variabilidad, modelling-eliciting activities
estadística, actividades promotoras de la modelización, modelización matemática, statistics, variability, educación secundaria, secondary education, mathematical modeling, variabilidad, modelling-eliciting activities
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
