
Cette thèse porte sur la nature de la matière noire (MN) et plus particulièrement sur le problème de la disparité des profils de densité interne de MN dans les galaxies naines, le problème « cusp-core". Nous avons commencé par réétudier ce problème pour la galaxie naine, Fornax, en utilisant la distribution spatiale et de masse des amas globulaires observée afin de contraindre le profil de MN. Ensuite, nous avons démontré avec des simulations N-corps que les minihalos de MN, en tant que nouvelle composante des amas globulaires, résolvent à la fois le "timing problem" et le problème "cusp-core" dans Fornax — dans le cas où les amas globulaires ont été récemment accrétés. Par ailleurs, nous avons examinés si les candidats de MN sous la forme de trous noirs primordiaux (TNP) peuvent résoudre ce problème dans les galaxies de faible masse. Ce mécanisme fonctionne pour les TNPs entre 25 et 100 Msol mais nécessite que la masse de la population de TNPs soit plus de 1% de la masse totale de MN dans les galaxies naines. Ensuite, nous avons démontré qu'en transférant de l’énergie par friction dynamique dans le centre des galaxies naines, le trou noir central est éjecté à des dizaines de parsecs. Enfin, nous démontrons que l'accrétion d'un satellite sur une orbite très excentrique provoque la formation d'un coeur de MN et explique également que le trou noir central soit décentré dans M31.
This doctoral research focuses on the nature of the dark matter (DM) and more particularly on the inconsistency of inner DM density profiles in dwarf galaxies, the cusp-core problem. We have found new resolutions of this cold DM challenge at small scales using high resolution fully GPU N-body simulations. First, we have re-investigated the Fornax cusp-core problem using observational results on the spatial and mass distributions of globular clusters in order to put constraints on the DM profile. Then, N-body simulations were designed to demonstrate that DM minihalos, as a new component of globular clusters, resolve both the timing and cusp-core problems in Fornax if the globular clusters were recently accreted. Secondly, we have examined whether DM candidates in the form of PBHs can solve the cusp-core problem in low-mass galaxies. This mechanism works for PBHs in the 25-100 Msol mass window but requires a lower limit on the PBH mass fraction of 1% of the total dwarf galaxy DM content. Then, we have demonstrated that subhalos sink and transfer energy via dynamical friction into the centres of dwarf galaxies. This dynamical heating kicks any central intermediate massive BH out to tens of parsecs. Finally, we demonstrate that accretion of a satellite on a highly eccentric orbit causes the formation a DM core and naturally explains a present BH offset by sub-parsecs in M31.
Fusions de galaxies, Matière noire, Amas globulaires, Dynamical friction, Friction dynamique, Dark matter, Trous noirs, [SDU.ASTR.GA] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA], Galaxies
Fusions de galaxies, Matière noire, Amas globulaires, Dynamical friction, Friction dynamique, Dark matter, Trous noirs, [SDU.ASTR.GA] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA], Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
