Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Doctoral thesis . 2014
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-UPMC
Doctoral thesis . 2014
Data sources: HAL-UPMC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Doctoral thesis . 2014
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Doctoral thesis . 2014
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical processes for inference in the non-proportional hazards model

Authors: Chauvel, Cecile;

Empirical processes for inference in the non-proportional hazards model

Abstract

Nous nous intéressons à des processus empiriques particuliers pour l'inférence dans le modèle à risques non proportionnels. Ce modèle permet au coefficient de régression de varier avec le temps et généralise le modèle à risques proportionnels très utilisé pour modéliser des données de survie. Le processus du score standardisé que nous étudions est une somme séquentielle des résidus standardisés du modèle. Le processus est considéré en présence d'une covariable dans le modèle, avant d'être étendu au cas de multiples covariables pouvant être corrélées. Le plan du manuscrit se décompose en trois parties. Dans un premier temps, nous établissons les propriétés limites du processus sous le modèle et sous un modèle mal spécifié. Dans une deuxième partie, nous utilisons les résultats de convergence du processus pour dériver des tests de la valeur du paramètre du modèle. Nous montrons qu'un des tests proposés est asymptotiquement équivalent au test de référence du log-rank pour comparer les fonctions de survie de plusieurs groupes de patients. Nous construisons des tests plus puissants que le test du log-rank sous certaines alternatives. Enfin, dans la dernière partie, nous étudions comment lier prédiction et adéquation dans le modèle à risques non proportionnels. Nous proposons une méthode de construction d'un modèle bien ajusté en maximisant sa capacité prédictive. Aussi, nous introduisons un test d'adéquation du modèle à risques proportionnels. Les performances des méthodes proposées, qu'il s'agisse des tests sur le paramètre ou de l'adéquation du modèle, sont comparées à des méthodes de référence par des simulations. Les méthodes sont illustrées sur des données réelles.

In this thesis, we focus on particular empirical processes on which we can base inference in the non-proportional hazards model. This time-varying coefficient model generalizes the widely used proportional hazards model in the field of survival analysis. Our focus is on the standardized score process that is a sequential sum of standardized model-based residuals. We consider first the process with one covariate in the model, before looking at its extension for multiple and possibly correlated covariates. The outline of the manuscript is composed of three parts. In the first part, we establish the limit properties of the process under the model as well as under a misspecified model. In the second part, we use these convergence results to derive tests for the value of the model parameter. We show that one proposed test is asymptotically equivalent to the log-rank test, which is a benchmark for comparing survival experience of two or more groups. We construct more powerful tests under some alternatives. Finally, in the last part, we propose a methodology linking prediction and goodness of fit in order to construct models. The resulting models will have a good fit and will optimize predictive ability. We also introduce a goodness-of-fit test of the proportional hazards model. The performances of our methods, either tests for the parameter value or goodness-of-fit tests, are compared to standard methods via simulations. The methods are illustrated on real life datasets.

Country
France
Keywords

Processus empirique, Survie, Non-proportional hazards model, Adéquation, Tests d'hypothèse, [MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM], Prédiction, Prediction, Modèle à risques non proportionnels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green