Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Siberian Mathematica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Siberian Mathematical Journal
Article . 2001 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Error of Analytic Continuation from a Finite Set with Inaccurate Data in Hilbert Spaces of Holomorphic Functions

Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions
Authors: L. S. Maergoiz; A. M. Fedotov;

Optimal Error of Analytic Continuation from a Finite Set with Inaccurate Data in Hilbert Spaces of Holomorphic Functions

Abstract

The article under review refers to the papers [\textit{L.~S.~Maergojz}, Sib. Math. J. 41, No. 6, 1126-1136 (2000; Zbl 0970.32011) and Dokl. Math. 56, No. 2, 674-678 (1997; Zbl 0973.32002)] wherein the problem of optimal extrapolation from a finite set is studied in the class of entire functions with finite spectrum. The aim of the present article is to study this problem in the case of analytic continuation from a finite set with inaccurate data. To estimate the error of a linear functional, an approach is employed suggested by \textit{K.~Miller} in [SIAM J. Math. Anal. 1, 52-74 (1970; Zbl 0214.14804)] based on using the least squares method for ill-posed problems with a prescribed bound. As a result, the authors obtain constructive formulas for calculating the optimal error of the optimal linear algorithm for extrapolation from a set \(U\) to a point \(z_0\) in the class of functions \[ V = \{f\in H(D): \|f\|\leq r\}, \quad r > 0, \] where \(H\) is a Hilbert space with reproducing kernel. Moreover, the asymptotic behavior of the optimal error is investigated in the case when the errors of estimating the initial data tend to zero.

Keywords

analytic continuation, Entire functions of several complex variables, Removable singularities in several complex variables, Continuation of analytic objects in several complex variables, extrapolation with inaccurate data, optimal error, optimal linear algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!