
handle: 2117/178491 , 10550/64633 , 20.500.11797/RP2464 , 11000/34137
A methodological approach for modelling the spatial distribution of bioclimatic indices is proposed in this paper. The value of the bioclimatic index is modelled with a hierarchical Bayesian model that incorporates both structured and unstructured random effects. Selection of prior distributions is also discussed in order to better incorporate any possible prior knowledge about the parameters that could refer to the particular characteristics of bioclimatic indices. MCMC methods and distributed programming are used to obtain an approximation of the posterior distribution of the parameters and also the posterior predictive distribution of the indices. One main outcome of the proposal is the spatial bioclimatic probability distribution of each bioclimatic index, which allows researchers to obtain the probability of each location belonging to different bioclimates. The methodology is evaluated on two indices in the Island of Cyprus.
Peer Reviewed
Inference from spatial processes, Bayesian inference, Parallel computation, Classificació AMS::62 Statistics::62F Parametric inference, Classificació AMS::62 Statistics::62P Applications, Applications of statistics to biology and medical sciences; meta analysis, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, spatial prediction, :62 Statistics::62F Parametric inference [Classificació AMS], Classificació AMS::62 Statistics::62M Inference from stochastic processes, geostatistics, Geostatistics, Classificació AMS::86 Geophysics, Bioclimatologia, :62 Statistics::62M Inference from stochastic processes [Classificació AMS], Bioclimatology, Bioclimatology, geostatistics, parallel computation, spatial prediction, :62 Statistics::62P Applications [Classificació AMS], 62F15, 62M30, 62P10, 62P12, 86A32, CDU::0 - Generalidades., Spatial prediction, Estadística bayesiana, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], :86 Geophysics [Classificació AMS], Applications of statistics to environmental and related topics, bioclimatology, parallel computation
Inference from spatial processes, Bayesian inference, Parallel computation, Classificació AMS::62 Statistics::62F Parametric inference, Classificació AMS::62 Statistics::62P Applications, Applications of statistics to biology and medical sciences; meta analysis, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, spatial prediction, :62 Statistics::62F Parametric inference [Classificació AMS], Classificació AMS::62 Statistics::62M Inference from stochastic processes, geostatistics, Geostatistics, Classificació AMS::86 Geophysics, Bioclimatologia, :62 Statistics::62M Inference from stochastic processes [Classificació AMS], Bioclimatology, Bioclimatology, geostatistics, parallel computation, spatial prediction, :62 Statistics::62P Applications [Classificació AMS], 62F15, 62M30, 62P10, 62P12, 86A32, CDU::0 - Generalidades., Spatial prediction, Estadística bayesiana, :Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], :86 Geophysics [Classificació AMS], Applications of statistics to environmental and related topics, bioclimatology, parallel computation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
