
The feedback-based algorithm for quantum optimization (FALQON) has recently been proposed to find ground states of Hamiltonians and solve quadratic unconstrained binary optimization problems. This paper efficiently generalizes FALQON to tackle quadratic constrained binary optimization (QCBO) problems. For this purpose, we introduce a new operator that encodes the problem's solution as its ground state. Using control theory, we design a quantum control system such that the state converges to the ground state of this operator. When applied to the QCBO problem, we show that our proposed algorithm saves computational resources by reducing the depth of the quantum circuit and can perform better than FALQON. The effectiveness of our proposed algorithm is further illustrated through numerical simulations.
Lyapunov Control, Variational Quantum Algorithms, Feedback-Based Algorithm for Quantum Optimization, Quadratic Constrained Binary Optimization, Noisy Intermediate-Scale Quantum Devices
Lyapunov Control, Variational Quantum Algorithms, Feedback-Based Algorithm for Quantum Optimization, Quadratic Constrained Binary Optimization, Noisy Intermediate-Scale Quantum Devices
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
