Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YÖK Açık Bilim - CoH...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
TOBB ETU GCRIS Database
Other literature type
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pem Tipi Yakıt Pillerinin İki ve Üç Boyutlu Modellenmesi

2-D and 3-D Modeling of Proton Exchange Membrane Fuel Cells
Authors: Türkmen, İbrahim;

Pem Tipi Yakıt Pillerinin İki ve Üç Boyutlu Modellenmesi

Abstract

Bu çalışmada, COMSOL® ticari yazılımı kullanılarak, tek hücreli PEM tipi bir yakıt pilinin, iki ve üç boyutlu, izotermal, tek fazlı ve kararlı haldeki modelleri oluşturulmuştur. Oluşturulan modellerde, paralel akış kullanılmıştır. Modelde, elektron akımının iletken katı kısımdan iletimi, gazların akış kanallarındaki transferi ve su molekülleri ile iyonların polimer elektrolit zardan taşınımı bulunmaktadır. Akış kanallarındaki türlerin, gaz akışı sıkıştırılamaz Navier-Stokes denklemleri ile Brinkman denklemlerinin birlikte kullanılması ile çözülürken, su ve iyon transferi genelleştirilmiş Maxwell-Stefan denklemleri ile çözülmektedir. Bu araştırma esas olarak, pil geometrisi, sıcaklığa bağlı olarak değişen zarın iyonik iletkenliği, denge akım yoğunluğu ve difüzyon katsayıları gibi parametrelerin yakıt pili performansına olan etkilerini ortaya çıkarmak için yapılmıştır. Bunu başarabilmek için modeller, farklı denge akım yoğunluğu, zar iyonik iletkenliği ve difüzyon katsayılarında ve farklı geometrilerde çözülmüştür. Bu çalışmada hidrojen, oksijen ve suyun farklı sıcaklık ve hücre çalışma potansiyellerindeki kütle dağılımları da incelenmiştir. Sonuçlara göre; performans, sıcaklık arttıkça artan denge akım yoğunluğu, zarın iyonik iletkenliği ve difüzyon katsayılarının artmasıyla, artmaktadır. Ayrıca, geometrinin performansa olan etkisini belirlemek için iki farklı geometride üç boyutlu modeller oluşturulmuş ve bu modellerin karşılaştırılması yapılmıştır. Bu modellerden biri düz kanal geometrisine, diğeri ise silindirik kanal geometrisine sahiptir. Güç yoğunluğunun en yüksek olduğu hücre çalışma potansiyeli değerlerinde(0,4-0,6 V), silindirik modelden 25 ?C'de, 0,58-0,93 A/cm2 aralığında, 80 ?C'de ise 0,82-1,05 A/cm2 aralığında akım yoğunluğu elde edilmiştir. Düz modelde ise aynı çalışma potansiyeli değerlerinde 25 ?C'de, 0,54-0,84 A/cm2 aralığında, 80 ?C'de ise 0,75-0,95 A/cm2 aralığında akım yoğunluğu elde edilmiştir.

In this study, 2-D and 3-D steady state, isothermal, and one-phase numerical models of a single Proton Exchange Membrane Fuel Cell were built by using COMSOL Multiphysics® software. A parallel-to-flow model of a single cell was used as the modeling domain. The model consisted of the delivery of electrical current in solid phase, transportation of gases in the flow channels, and transmission of water and ions in the polymer electrolyte membrane. The gas flow of the reactants in the channels was solved by incompressible Navier-Stokes equations with Brinkman equation while water and ion transportation was solved by generalized Maxwell-Stefan equations. The investigation was mainly focused on effects of the geometry and the effects of the parameters that are related with temperature, such as exchange current density, ionic conductivity and diffusivity values. To achieve that, 2-D and 3-D parallel-to-flow models with different exchange current density, ionic conductivity and diffusivity values and different geometries were solved. Mass fraction distribution of hydrogen, oxygen, and water were examined at different temperature and voltage values. It was pointed out from the results that increasing exchange current density, ionic conductivity and diffusivity values results in better performance. To determine the effect of geometry two models with different geometries were built and solved. One of the models has planar channel geometry while the other has cylindrical channel geometry. At middle cell potential values where the power density is high, the current density that is obtain from cylindrical model is between 0.58-0.93 A/cm2 at 25 ?C and 0.82-1.05 A/cm2 at 80 ?C. At same cell potential values, the current density that is obtain from planar model is between 0.54-0.84 A/cm2 at 25 ?C and 0.75-0.95 A/cm2 at 80 ?C.

143

Keywords

PEM fuel cell, COMSOL, Energy, Mechanical Engineering, Makine Mühendisliği, 2D and 3D modeling, Enerji, İki ve üç boyutlu modelleme, PEM yakıt pili

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities