Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA2arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Report . 2022
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Task-Based Parallel Programming for Scalable Algorithms: application to Matrix Multiplication

Authors: Agullo, Emmanuel; Buttari, Alfredo; Guermouche, Abdou; Herrmann, Julien; Jego, Antoine;

Task-Based Parallel Programming for Scalable Algorithms: application to Matrix Multiplication

Abstract

Les modèles de programmation à base de tâches ont réussi à susciter l'intérêt de la communauté des logiciels mathématiques de haute performance grâce à la manière dont ils soulagent une partie du fardeau que représentent le développement et la mise en œuvre efficace et portable d'algorithmes parallèles à mémoire distribuée. Dans des grappes d'ordinateurs de plus en plus grandes et hétérogènes, ces modèles apparaissent comme un moyen de développer et maintenir des algorithmes plus complexes. Cependant, les modèles de programmation basés sur les tâches manquent de flexibilité et les caractéristiques nécessaires pour exprimer de manière élégante et compacte des algorithmes passant à l'échelle se basant sur des schémas de communication avancés. Nous montrons que le paradigme de flot de tâches séquentiel (STF) peut être étendu pour écrire une multiplication matricielle passant à l'échelle. Cette extension a nécessité peu de modifications au système d'exécution StarPU. L'implantation finale est compétitive jusqu'à 32 768 cœurs avec les bibliothèques de pointe et peut même les surpasser dans certaines configurations spécifiques.

Task-based programming models have succeeded in gaining the interest of the high-performance mathematical software community thanks to how they relieve part of the burden of developing and implementing distributed-memory parallel algorithms in an efficient and portable way. In increasingly larger, more heterogeneous clusters of computers, these models appear as a way to maintain and enhance more complex algorithms. However, task-based programming models lack the flexibility and the features that are necessary to express in an elegant and compact way scalable algorithms that rely on advanced communication patterns. We show that the Sequential Task Flow paradigm can be extended to write a compact yet efficient and scalable General Matrix Multiplication. This extension required few modifications to the StarPU runtime system. The final implementation is shown to be competitive up to 32,768 cores with state-of-the-art libraries and may outperform them on some specific problem configurations.

Keywords

parallelism, logiciels mathématiques, multiplication matricielle, matrix multiplication, [INFO] Computer Science [cs], communication patterns, mathematical software, schémas de communication, programmation à base de tâches, passage à l'échelle, task-based programming, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], scalability, parallélisme

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities