
handle: 10261/133020 , 2117/103612
Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Planning operators, 330, :Informàtica::Automàtica i control [Àrees temàtiques de la UPC], :Optimisation [Classificació INSPEC], Scheduling, [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], Classificació INSPEC::Optimisation::Mathematical programming::Stochastic programming, Classificació INSPEC::Optimisation, Stochastic domains, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [INFO] Computer Science [cs], :Optimisation::Mathematical programming::Stochastic programming [Classificació INSPEC], Endogenous growth, State transitions, Experimental validations, Àrees temàtiques de la UPC::Informàtica::Automàtica i control, Optimization method, Inductive logic programming (ILP), Relational representations, Stochastic Systems, Learning approach
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Planning operators, 330, :Informàtica::Automàtica i control [Àrees temàtiques de la UPC], :Optimisation [Classificació INSPEC], Scheduling, [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], Classificació INSPEC::Optimisation::Mathematical programming::Stochastic programming, Classificació INSPEC::Optimisation, Stochastic domains, [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [INFO] Computer Science [cs], :Optimisation::Mathematical programming::Stochastic programming [Classificació INSPEC], Endogenous growth, State transitions, Experimental validations, Àrees temàtiques de la UPC::Informàtica::Automàtica i control, Optimization method, Inductive logic programming (ILP), Relational representations, Stochastic Systems, Learning approach
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
