Powered by OpenAIRE graph
Found an issue? Give us feedback

POSYTYF

POwering SYstem flexibiliTY in the Future through RES
Funder: European CommissionProject code: 883985 Call for proposal: H2020-LC-SC3-2019-NZE-RES-CC
Funded under: H2020 | RIA Overall Budget: 4,726,580 EURFunder Contribution: 4,726,580 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
605
425
Description

Increasing the part of Renewable Energy Sources (RES) in modern power grids is of critical importance for the transformation of the global energy system. However, stability and participation to ancillary services issues related to RES limit their use. Indeed, the RES grid integration faces major limitations when high RE penetration is expected. A solution to overcome this is to increase the share of so-called dispatchable RES, i.e., the ones which have a natural storage capacity. The main objective in the POSYTYF project is to group several RES into a systemic object called Virtual Power Plant (VPP). VPP is a way to aggregate RES sources to form a portfolio of dispatchable/non-dispatchable RES able to optimally internally redispatch resources in case of meteorological and system variations in order to provide sufficient flexibility, reliable power output and grid services. The POSYTYF project will provide TSOs, DSOs and generators with knowledge, models and tools for synthesis of VPP controls both for local (production) and grid (ancillary services) objectives. New analysis (stability assessement) and control (centralized vs decentralized concepts) methods will be particularly proposed. Solutions will be immediately implementable in the actual grid and regulatory situation. Realistic (large-scale grids and concrete RES technologies) cases will be treated and full validations – both in simulation and hardware in the loop along with the codes for regulator’s implementation will be made available. Proposals for some main problems like stability will be formulated for next generation grids of massive RES penetration and low inertia systems. The interdisciplinary and ambitious POSYTYF project brings together 10 partners from 4 EU countries. They will bring the VPP technology from TRL 3-4 to TRL 4-5 by evaluating new stability issues, proposing new control algorithms.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 605
    download downloads 425
  • 605
    views
    425
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::dff1b85474dadb967ea0c40f6d5e37f8&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down