Powered by OpenAIRE graph
Found an issue? Give us feedback

REALMAX

Replenishing the limited Aluminium reservoir of MAX phase coatings in harsh environments
Funder: European CommissionProject code: 892501 Call for proposal: H2020-MSCA-IF-2019
Funded under: H2020 | MSCA-IF-EF-ST Overall Budget: 162,806 EURFunder Contribution: 162,806 EUR
Description

Phase stability is likely to be the single most important specification which determines the lifetime of materials operating in extreme environments. Whether a phase will react with the environment or decompose at high temperature is an essential limitation for the use of the material for any given applications. MAX phases are a family of layered ternary ceramics currently being developed for extreme environment applications because of their tolerance to heat, their ceramic-metallic hybrid properties and more importantly because of their self-healing behaviour. However, similarly to other self-healing materials, aluminium-based MAX phases tend to decompose locally as soon as Al reacts to form the protective oxide scale. Upon decomposition, the unique set of properties deteriorates rapidly. The REALMAX project will tackle the outward diffusion of Al from MAX phase coatings in oxidising environments, by providing solutions for supplying Al to the coating from a MAX phase substrate which will act as Al-reservoir. Furthermore, the REALMAX project will engage in ground-breaking research to develop multifunctional coatings and validate the concept of “high-entropy” MAX phases. In fact, these multielement MAX phases constitute a new and exciting research line which is in the early stages of being developed. The REALMAX project will be carried out by the experienced researcher (ER) who has gained experience on MAX phase coatings during her current postdoctoral position. The ER has aligned a team of experts in MAX phases, coatings and material processing who will collaborate to offer innovative solutions to increase phase stability in MAX phase systems while mentoring her to achieve her career plans. In fact, she will be well positioned to pursue her academic career in Europe, while simultaneously adding genuinely novel expertise approaches to the research environment and the group she will be joining. Therefore, the mutual benefit and impact of this proposal is extensive.

Partners
Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::aca30b124b5c4014584ff410a09f70b7&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down