Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.69997/sct.1...
Article . 2025 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2026
License: CC BY
Data sources: Datacite
ZENODO
Article . 2026
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

Soft-Sensor-Enhanced Monitoring of an Alkylation Unit via Multi-Fidelity Model Correction

Authors: Fáber, Rastislav; Vaccari, Marco; Capaci, Riccardo Bacci di; Lubušky Karol; Pannocchia, Gabriele; Paulen, Radoslav;

Soft-Sensor-Enhanced Monitoring of an Alkylation Unit via Multi-Fidelity Model Correction

Abstract

Industrial process monitoring can benefit from utilizing historical data, providing insights for decision-making and operational efficiency. This study develops a soft-sensor-based approach leveraging multi-fidelity modeling to correct discrepancies between online sensors and laboratory analyses. A Gaussian process-based strategy is used to predict deviations between high-frequency low-fidelity sensor data and less frequent high-fidelity laboratory measurements. By exploring static and dynamic modeling frameworks, we assess their suitability for capturing process dynamics and addressing time-dependent variability. The multi-fidelity soft sensor noticeably improves predictive accuracy, outperforming high-fidelity and low-fidelity methods. This approach demonstrates applicability across various industrial settings where integrating diverse data sources enhances real-time process control and monitoring, reducing reliance on costly laboratory sampling.

Country
Italy
Keywords

Industry 4.0, Information Management, Machine Learning, Modelling, Process Monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!