<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exhaust Gas Processors (EGP) or Exhaust After Treatment Systems (EATS) are usually mounted on vehicle chassis or engine body with the help of mounting straps due to its ease of installation. It is prescribed for any industry to manufacture an optimized design of strap joint and duly test it before making an entry to the market. There is no standard method available to be followed by the industry for strap validation at an earlier stage. Most of the strap joint designed and tested based either on MAST test (done in the later stages) or on the experience. So, to test the strap joint at an earlier stage there is a need to design a component level strap joint validation method with a goal to assess the durability of strap joint vulnerable to fatigue failures due to vibration over-amplification in a bracketed after-treatment assembly while able of detecting any design flaws and eliminating or reducing numbers of potential test induced failures. The objective of this work is to define and document a systematic approach for component level strap joint validation method used to mount after treatment system components. Due to geometrical complexity and nature of material, geometrical nonlinearity and material nonlinearity were considered in the analysis. Also, for getting the most realistic results contact nonlinearity was also considered. And finally, out of various approaches investigated, an approach which was able to replicate failures in a more exact manner comparable to assembly level test was recommended as the component level strap validation method.
Multi axis shaker table (MAST), Strap joint, Exhaust Gas Processors (EGP) or Exhaust After Treatment Systems (EATS), Aftertreatment system (ATS)
Multi axis shaker table (MAST), Strap joint, Exhaust Gas Processors (EGP) or Exhaust After Treatment Systems (EATS), Aftertreatment system (ATS)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |