<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent advances in deep learning techniques have enabled the development of systems for automatic analysis of medical images. These systems often require large amounts of training data with high quality labels, which is difficult and time consuming to generate. Here, we introduce Radiology Object in COntext Version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions extracted from the PubMed Open Access subset. Concepts for clinical modality, anatomy (X-ray), and directionality (X-ray) were manually curated and additionally evaluated by a radiologist. Unlike MIMIC-CXR, ROCOv2 includes seven different clinical modalities. It is an updated version of the ROCO dataset published in 2018, and includes 35,705 new images added to PubMed since 2018, as well as manually curated medical concepts for modality, body region (X-ray) and directionality (X-ray). The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical 2023. The participants had access to the training and validation sets after signing a user agreement. The dataset is suitable for training image annotation models based on image-caption pairs, or for multi-label image classification using the UMLS concepts provided with each image, e.g., to build systems to support structured medical reporting. Additional possible use cases for the ROCOv2 dataset include the pre-training of models for the medical domain, and the evaluation evaluation of deep learning models for multi-task learning.
machine learning, medical concepts, image captions, image, radiology
machine learning, medical concepts, image captions, image, radiology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |