
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10216/154762
https://aimc2023.pubpub.org/pub/9z68g7d2 Music has been commonly recognized as a means of expressing emotions. In this sense, an intense debate emerges from the need to verbalize musical emotions. This concern seems highly relevant today, considering the exponential growth of natural language processing using deep learning models where it is possible to prompt semantic propositions to generate music automatically. This scoping review aims to analyze and discuss the possibilities of music generation conditioned by emotions. To address this topic, we propose a historical perspective that encompasses the different disciplines and methods contributing to this topic. In detail, we review two main paradigms adopted in automatic music generation: rules-based and machine-learning models. Of note are the deep learning architectures that aim to generate high-fidelity music from textual descriptions. These models raise fundamental questions about the expressivity of music, including whether emotions can be represented with words or expressed through them. We conclude that overcoming the limitation and ambiguity of language to express emotions through music, some of the use of deep learning with natural language has the potential to impact the creative industries by providing powerful tools to prompt and generate new musical works.
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Multimedia, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Multimedia (cs.MM), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Multimedia, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Multimedia (cs.MM), Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 19 | |
downloads | 13 |