
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effective data management and sharing have become increasingly crucial in biomedical research; however, many laboratory researchers lack the necessary tools and knowledge to address this challenge. This article provides an introductory guide into research data management (RDM), and the importance of FAIR (Findable, Accessible, Interoperable, and Reusable) data-sharing principles for laboratory researchers produced by practicing scientists. We explore the advantages of implementing organized data management strategies and introduce key concepts such as data standards, data documentation, and the distinction between machine and human-readable data formats. Furthermore, we offer practical guidance for creating a data management plan and establishing efficient data workflows within the laboratory setting, suitable for labs of all sizes. This includes an examination of requirements analysis, the development of a data dictionary for routine data elements, the implementation of unique subject identifiers, and the formulation of standard operating procedures (SOPs) for seamless data flow. To aid researchers in implementing these practices, we present a simple organizational system as an illustrative example, which can be tailored to suit individual needs and research requirements. By presenting a user-friendly approach, this guide serves as an introduction to the field of RDM and offers practical tips to help researchers effortlessly meet the common data management and sharing mandates rapidly becoming prevalent in biomedical research.
Biomedical Research, Information Dissemination, Humans, research data management, practical guide, data sharing, Research Personnel, Data Management
Biomedical Research, Information Dissemination, Humans, research data management, practical guide, data sharing, Research Personnel, Data Management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 95 | |
downloads | 78 |