Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Code and data associated with «Differences in COVID‐19 cyclicity and predictability among U.S. counties and states reflect the effectiveness of protective measures»

Authors: Bozzuto, Claudio; Ives, Anthony R.;

Code and data associated with «Differences in COVID‐19 cyclicity and predictability among U.S. counties and states reflect the effectiveness of protective measures»

Abstract

Below you'll find code and data associated with the following article: Bozzuto, C, Ives, AR (2023): Differences in COVID‐19 cyclicity and predictability among U.S. counties and states reflect the effectiveness of protective measures. Scientific Reports. https://doi.org/10.1038/s41598-023-40990-0. ABSTRACT: During the COVID‐19 pandemic, many quantitative approaches were employed to predict the course of disease spread. However, forecasting faces the challenge of inherently unpredictable spread dynamics, setting a limit to the accuracy of all models. Here, we analyze COVID‐19 data from the USA to explain variation among jurisdictions in disease spread predictability (that is, the extent to which predictions are possible), using a combination of statistical and simulation models. We show that for half the counties and states the spread rate of COVID‐19, r(t), was predictable at most 9 weeks and 8 weeks ahead, respectively, corresponding to at most 40% and 35% of an average cycle length of 23 weeks and 26 weeks. High predictability was associated with high cyclicity of r(t) and negatively associated with R0 values from the pandemic’s onset. Our statistical evidence suggests the following explanation: jurisdictions with a severe initial outbreak, and where individuals and authorities took strong and sustained protective measures against COVID‐19, successfully curbed subsequent waves of disease spread, but at the same time unintentionally decreased its predictability. Decreased predictability of disease spread should be viewed as a by‐product of positive and sustained steps that people take to protect themselves and others.

Related Organizations
Keywords

state-space model, statistical modeling, time series analysis, predictability, COVID-19, NPI, United States of America, simulation, non-pharmaceutical interventions, ARMA, USA, cyclicity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 88
  • 88
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
88
Related to Research communities