Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ELITE surface longwave upwelling radiation: global 1km Swath 5-min SLUR - Terra (2010.04-06)

Authors: Jie, Cheng; Qi, Zeng; Hao, Sun;

ELITE surface longwave upwelling radiation: global 1km Swath 5-min SLUR - Terra (2010.04-06)

Abstract

The Essential thermaL Infrared remoTe sEnsing (ELITE) product suite currently has four types of products, including land surface temperature (LST: clear-sky and all-sky), emissivity (NBE: narrowband emissivity; BBE: broadband emissivity; and spectral emissivity), the component of surface radiation and energy budget (SLUR: surface longwave upwelling radiation; SLDR: surface longwave downward radiation SLDR; SLNR: surface longwave net radiation), and the component of Earth’s radiation budget (OLR; outgoing longwave radiation; RSR: reflected solar radiation). The spatial-temporal resolutions of the ELITE products are mainly determined by the employed satellite data sources. For more information about ELITE products, please refer to the website (https://elite.bnu.edu.cn). This dataset is the ELITE global 1km instantaneous SLUR product ranging from 2000 to 2022 (continuously updated). This dataset was generated from the Moderate Resolution Imaging Spectrometer (MODIS, Terra and Aqua) data using the algorithm developed by Cheng et al. (2016). This is the ELITE SLUR (Terra) product in 2010.04-2010.06. Please click here to download the ELITE SLUR (Terra) product in 2010.01-2010.03 and click here to download the ELITE SLUR (Terra) product in 2010.07-2010.09. Dataset Characteristics: Spatial Coverage: Global Temporal Coverage: 2010 Spatial Resolution: 1 km Temporal Resolution: 5min/instantaneous Data Format: hdf Scale: 0.05 Offset: -1000 Citation (Please cite these papers when using the data): Cheng, J., & Liang, S. (2016). Global estimates for high-spatial-resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 54(7), 4115-4129. If you have any questions, please contact Prof. Jie Cheng (Jie_Cheng@bnu.edu.cn).

Related Organizations
Keywords

MODIS, surface radiation budget, thermal infrared remote sensing, surface longwave upwelling radiation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
  • 17
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
17