Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind Stress, Wind Stress Curl, and Upwelling Velocities in the Northwest Atlantic (80-45W, 30-45N) during 1980-2019

Authors: Gifford, Ian; Gangopadhyay, Avijit; Andres, Magdalena; Gawarkiewicz, Glen; Oliver, Hilde; Silver, Adrienne;

Wind Stress, Wind Stress Curl, and Upwelling Velocities in the Northwest Atlantic (80-45W, 30-45N) during 1980-2019

Abstract

This dataset contains three netcdf files that pertain to monthly, seasonal, and annual fields of surface wind stress, wind stress curl, and curl-derived upwelling velocities over the Northwest Atlantic (80-45W, 30-45N) covering a forty year period from 1980 to 2019. Six-hourly surface (10 m) wind speed components from the Japanese 55-year reanalysis (JRA-55; Kobayashi et al., 2015) were processed from 1980 to 2019 over a larger North Atlantic domain of 100W to 10E and 10N to 80N. Wind stress was computed using a modified step-wise formulation, originally based on (Gill, 1982) and a non-linear drag coefficient (Large and Pond, 1981), and later modified for low speeds (Trenberth et al., 1989). See Gifford (2023) for more details. After the six-hourly zonal and meridional wind stresses were calculated, the zonal change in meridional stress (curlx) and the negative meridional change in zonal stress (curly) were found using NumPy’s gradient function in Python (Harris et al., 2020) over the larger North Atlantic domain (100W-10E, 10-80N). The curl (curlx + curly) over the study domain (80-45W, 10-80N) is then extracted, which maintain a constant order of computational accuracy in the interior and along the boundaries for the smaller domain in a centered-difference gradient calculation. The monthly averages of the 6-hour daily stresses and curls were then computed using the command line suite climate data operators (CDO, Schulzweida, 2022) monmean function. The seasonal (3-month average) and annual averages (12-month average) were calculated in Python using the monthly fields with NumPy (NumPy, Harris et al., 2020). Corresponding upwelling velocities at different time-scales were obtained from the respective curl fields and zonal wind stress by using the Ekman pumping equation of the study by Risien and Chelton (2008; page 2393). Please see Gifford (2023) for more details. The files each contain nine variables that include longitude, latitude, time, zonal wind stress, meridional wind stress, zonal change in meridional wind stress (curlx), the negative meridional change in zonal wind stress (curly), total curl, and upwelling. Units of time begin in 1980 and are months, seasons (JFM etc.), and years to 2019. The longitude variable extends from 80W to 45W and latitude is 30N to 45N with uniform 1.25 degree resolution. Units of stress are in Pascals, units of curl are in Pascals per meter, and upwelling velocity is described by centimeters per day. The spatial grid is a 29 x 13 longitude x latitude array. Filenames: monthly_windstress_wsc_upwelling.nc: 480 time steps from 80W to 45W and 30N to 45N. seasonal_windstress_wsc_upwelling.nc: 160 time steps from 80W to 45W and 30N to 45N. annual_windstress_wsc_upwelling.nc: 40 time steps from 80W to 45W and 30N to 45N.

{"references": ["Gifford, I.H., 2023. The Synchronicity of the Gulf Stream Free Jet and the Wind Induced Cyclonic Vorticity Pool. MS Thesis, University of Massachusetts Dartmouth. 75pp.", "Gill, A. E. (1982). Atmosphere-ocean dynamics (Vol. 30). Academic Press.", "Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357\u2013362 (2020). DOI: 10.1038/s41586-020-2649-2.", "Japan Meteorological Agency/Japan (2013), JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, https://doi.org/10.5065/D6HH6H41, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated monthly.)", "Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\u202fJournal of the Meteorological Society of Japan. Ser. II,\u202f93(1), pp.5-48.", "Large, W.G. and Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds.\u202fJournal of physical oceanography,\u202f11(3), pp.324-336.", "Risien, C.M. and Chelton, D.B., 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data.\u202fJournal of Physical Oceanography,\u202f38(11), pp.2379-2413.", "Schulzweida, Uwe. (2022). CDO User Guide (2.1.0). Zenodo. https://doi.org/10.5281/zenodo.7112925.", "Trenberth, K.E., Large, W.G. and Olson, J.G., 1989. The effective drag coefficient for evaluating wind stress over the oceans.\u202fJournal of Climate,\u202f2(12), pp.1507-1516."]}

Please contact igifford@earth.miami.edu for any queries.

Keywords

upwelling, CDO, JRA-55, Gulf Stream, North Atlantic, Northwest Atlantic, Python Computation, wind stress curl, wind stress, Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 3
  • 48
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
48
3