Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FORMULATION AND DEVELOPMENT OF TRANSFEROSOMAL GEL INCORPORATING WITH CHRYSIN FOR TOPICAL APPLICATION

Authors: Madhulika*, Dr. Manish Kumar Gupta;

FORMULATION AND DEVELOPMENT OF TRANSFEROSOMAL GEL INCORPORATING WITH CHRYSIN FOR TOPICAL APPLICATION

Abstract

Skin infection have variable presentations, etiologies and severities. Among the numerous drug delivery systems, vesicles as a drug carrier system have emerged as the preferred vehicle. Transfersomes have been discovered to be one of the most effective drug-delivery methods for topical treatment when compared to conventional topical systems. So, in this study, with the use of a gelling agent as a vehicle for the inclusion of transfersomes the transferosomal gel of chrysin was created for topical administration system. Preparation & evaluation of transferosomal gel was performed as per standard method. Results showed that F-12 formulation have lowest vesicle size of 165.58% with & entrapment efficiency of 73.49%. The zeta potential for F12 was recorded as -38.85. Further, the result of evaluation of transferosomal gel suggested that the optimized gel OTGF1 have Extrudability (g) and Spreadability (g.cm/sec) as 185±2.5 g and 11.15±1.5 g.cm/sec respectively. The viscosity of gel was noted to be 3215±18 cps. The % assay for transferosomal gel was estimated to be 98.15±0.32%. The % Cumulative Drug Release was found to be 92.23 at 12hour. Also, the formulated transferosomal gel was found to be stable for 3 months at 4.0 ±0. 2°C with normal physical appearance & drug content of 95.58&%. Keywords: Skin infection, Topical drug deliver, Novel drug delivery system Transferosome, Transferososmal gel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 10
  • 12
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
12
10
Green
Related to Research communities