Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PURE Aarhus University
Contribution for newspaper or weekly magazine . 2023
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VIRTA
Conference object . 2023
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2024 . Peer-reviewed
Data sources: Research.fi
http://dx.doi.org/10.1007/978-...
Part of book or chapter of book
License: Springer Nature TDM
Data sources: Sygma
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning Distinct Features Helps, Provably

Authors: Laakom, Firas; Raitoharju, Jenni; Iosifidis, Alexandros; Gabbouj; Moncef;

Learning Distinct Features Helps, Provably

Abstract

We study the diversity of the features learned by a two-layer neural network trained with the least squares loss. We measure the diversity by the average L2-distance between the hidden-layer features and theoretically investigate how learning non-redundant distinct features affects the performance of the network. To do so, we derive novel generalization bounds depending on feature diversity based on Rademacher complexity for such networks. Our analysis proves that more distinct features at the network’s units within the hidden layer lead to better generalization. We also show how to extend our results to deeper networks and different losses.

This work has been supported by the NSF-Business Fin- land Center for Visual and Decision Informatics (CVDI) project AMALIA. The work of Jenni Raitoharju was funded by the Academy of Finland (project 324475). Alexandros Iosifidis acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957337.

Keywords

ta113, FOS: Computer and information sciences, Computer Science - Machine Learning, Neural Networks, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, neuroverkot, Machine Learning (cs.LG), Feature Diversity, Generalization Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 70
    download downloads 23
  • 70
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
70
23
Green