Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

A Study Of Antimicrobial Activity Of Foam-Washing Agent Specimens At Acidic Ph Values

Authors: Strilets, O. P.; Petrovska, L. S.; Baranova, I. I.; Bespala, Yu. O.;

A Study Of Antimicrobial Activity Of Foam-Washing Agent Specimens At Acidic Ph Values

Abstract

Introduction. It is well-known that any parapharmaceutical substance, in particular, foam-washing agents comprising water in combination with detergents, extracts, water-soluble vitamins, viscosity regulators, pH, etc., is the ideal environment for microbial growth. Therefore, it is indispensable to use preservatives to protect any foam-washing agent from possible contamination by microorganisms. Their main advantages are: presence of a single antimicrobial and antifungal effect, expanded range of effects, decrease in the risk of resistance of microorganisms and decrease in the toxicity and concentration of the preserving mixture. In this regard, the shelf life of parapharmaceutical substances is not provided through the use of large quantities of preservatives, but thanks to their rational combination. Materials and Methods. For this study, we have made a number of samples of foam washing bases with a number of preservatives, which are often used in developing foam-washing agents with acidic pH value, namely: sample number 1 – foam washing base + sodium benzoate; sample number 2 – foam washing base + «Euxyl K300» (phenoxyethanol, methylparaben, bulylparaben, ethylparaben, propylparaben, isobutylaraben); sample number 3 – foam washing base + «Germaben II» (polypropylene glycol, diazolium dinomovine, methylparaben, propylparaben); sample number 4 – foam washing base + «Nipaquard CMB» (benzyl alcohol, triethylene glycol, chloromethylisothiazoline, methylisothiazoline). The concentration of preservative in each sample was 0.1% (average concentration that is recommended for developing foam-washing agents). The antimicrobial activity of prototype gels was studied in vitro by diffusion in agar (“wells” method). The antimicrobial activity was measured immediately after sample preparation. All the studies were performed in aseptic conditions using a laminar box (biological safety cabinet AS2-4E1 "Esco" Indonesia). Results. According to the study, it was found that among the selected preservatives “Nipaquard CMB” was just the most active. When studying the antimicrobial activity of foam-washing agent samples with different concentrations of the preservative “Nipaquard CMB”, it was found that namely the sample with the concentration of “Nipaquard CMB” of 0,1% showed satisfactory results due to its antimicrobial activity against all cultures such as bacteria and fungi. Conclusions. On the basis of microbiological studies it has been demonstrated that all the selected preservatives such as sodium benzoate, “Euxyl K300”, “Germaben II” and “Nipaquard CMB” at a concentration of 0.1% have a broad spectrum of antimicrobial action and antimicrobial activity against all test strains used. We just chose «Nipaquard CMB» as a preservative at a concentration of 0.1% according to the results of experimental research, because it had the best results and a very high antimicrobial activity both against the bacterial cultures - Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pr. Vulgaris and in relation to the effect on fungal cultures – Candida albicans, Aspergillus brasiliensis.

Keywords

biological researches, preservative, antimicrobial activity, foam- washing agent, рН value.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 15
    download downloads 8
  • 15
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
15
8
Green